¹⁸FDG UPTAKE AND THE VALUE OF PET/CT IN STAGE DIAGNOSIS IN ESOPHAGEAL CANCER PATIENTS

Nguyen Van Ba¹; Tran Viet Tien¹ Pham Ngoc Diep¹; Nguyen Danh Thanh¹

SUMMARY

Objectives: To assess the value of ¹⁸FDG PET/CT in stage diagnosis in esophageal cancer patients. Subjects and methods: 32 esophageal cancer patients were performed ¹⁸FDG PET/CT for initial stage diagnosis before the treatment. Results: ¹⁸FDG uptake of osephageal tumors increased, SUV_{max} increase from 3.1 to 44.8; average value 17.9 ± 9.2; It increased with invasive degree and stage of tumor. The ¹⁸FDG PET/CT changed diagnosis of T stage in 2/32 patients (6.3%), of N stage in 15/32 patients (46.8%), detected metastases in 14 patients. After using ¹⁸FDG PET/CT, 14/32 patients (43.7%) were upstaged, which included 7/10 patients (70%) of stage I and II and 7/15 patients (46.7%) of stage III. Conclusion: ¹⁸FDG PET/CT scan effectively detected nodes, distant metastases, it had great value in stage diagnosis of esophageal cancer patients.

* Keywords: Esophageal cancer; Staging diagnosis; ¹⁸FDG PET/CT.

INTRODUCTION

Esophageal cancer ranks sixth in men, ninth in women in the world. The percentage of men and women varies from 4:1 to 14:1 or higher. According to the World Cancer Research Association, there are about 482,000 new cancer cases each year, of which the mortality rate is very high, 84% of esophageal cancer cases died in 2008.

For effective treatment of esophageal cancer, accurate diagnosis of the stage is very important. The main advantage of ¹⁸FDG PET/CT scan is localizing nodal lesions, nodal metastases, mediastinal lymph nodes, and lymph node metastasis are identified with high sensitivity and specificity. ¹⁸FDG PET/CT allows for more accurate detection of distant metastatic

lesions such as lung metastases, liver metastases, bone metastases that other conventional tests have not yet screened. Thus, based on new lesions detected on ¹⁸FDG PET/CT, it helps to diagnose accurately stage of esophageal cancer, which has altered initial treatment in about one-third of patients [3, 5].

At the Oncology Center and Nuclear Medicine, 103 Military Hospital has applied ¹⁸FDG PET/CT effectively in the stage diagnosis of many types of cancer. In this topic, we conducted research with the purposes:

- ¹⁸FDG uptake characteristics of esophageal cancer.

- Evaluation of the value of ¹⁸FDG PET/CT in stage diagnosis in esophageal cancer patients.

Corresponding author: Pham Ngoc Diep (dieppham169@gmail.com) Date received: 20/10/2018 Date accepted: 03/12/2018

^{1. 103} Military Hospital

SUBJECTS AND METHODS

1. Subjects.

Patients diagnosed with pathologic esophageal cancer, with indication for ¹⁸FDG PET/CT scan prior to treatment for stage diagnosis at the Center for Oncology and Nuclear Medicine, 103 Military Hospital from June 2017 to June 2018.

2. Methods.

- Clinical, uncontrolled, convenient sampling.

- An assessment of disease stage before ¹⁸FDG PET/CT scan according to the TNM system (AJCC 2010).

- Procedures for ¹⁸FDG PET/CT scan:

+ PET/CT TruFlight Select system of Philips brand. TRUE D software analyzes the results.

+ Radioactive substance: ¹⁸FDG (2-fluoro-2-deoxy-D-glucose), dose of 0.15 mCi/kg body weight. + Patients must have fast breakfast for 4 - 6 hours, receive a clinical examination, measure height, weight, blood pressure, temperature and blood glucose test before injecting ¹⁸FDG (blood sugar should be less than 8 mmol/L or 150 mg/dL).

+ Conduct ¹⁸FDG PET/CT scan after 45 minutes of radioactive substance injection. Patients must urinate before scanning.

+ CT 16 scan, 140 kV, 80 mA with a thickness of 3 mm. CT images are reproduced by the 512×512 matrix.

+ The results were analyzed, assessed and evaluated by physician majored in nuclear medicine and imaging physician based on CT imaging, PET imaging and PET/CT inter-imaging under histopathological and histological diagnosis: ¹⁸FDG uptake increased on PET/CT. Determination of the semi-quantitative indices of ¹⁸FDG SUV_{max} uptake for primary tumor lesions, metastatic lesions, and lymph nodes.

RESULTS AND DISCUSSION

1. Characteristics of ¹⁸FDG uptake of tumors, lymph nodes, distant metastatic lesions in esophageal cancer patients.

Tumor location	Number of patients		р		
		Min	Max	X ± SD	
1/3 upper (1)	4	3.1	30.9	16.8 ± 13.3	
1/3 middle (2)	13	4.5	24.8	16.8 ± 6.6	$p_{1,2} = 0.49$
1/3 lower (3)	15	5	44.8	19.1 ± 10.4	$p_{1,3} = 0.38$ $p_{2,3} = 0.24$
Total	32			17.9 ± 9.2	• 2-

Table 1: ¹⁸FDG (SUV_{max}) uptake by tumor position.

Most of the malignant tumors in the esophagus were strongly increased glucose uptake. Therefore, PET/CT with ¹⁸FDG is very valuable in the initial stage diagnosis of esophageal cancer. In the research group, ¹⁸FDG uptake increased, SUV_{max} from 3.1 to 44.8; average value 17.9 ± 9.2; which was about 6 - 7 times higher than the standard diagnosis (2.5).

¹⁸FDG uptake in tumor not only reflects the benign tumor/melanoma border but also partly reflects the intrinsic biology of the tumor, so many SUVs are not only valuable for cancer diagnosis but it is also worth prolonging the life expectancy, treatment results, etc. There was a significant difference in treatment outcomes in patients with "low" SUVs and "high" SUVs, so many studies have shown interest in glucose uptake characteristics of tumors, nodes, metastasis, showing that ¹⁸FDG SUV_{max} may be a biomarker with assessment value of tumor malignancy, direction for treatment... [3, 5].

T invasive degree	Number of patients	SUV _{max}	р
T1 (1)	4	7.9 ± 4.4	
T2 (2)	8	14.1 ± 8.7	p _{1,2} = 0.06; p _{1,3} = 0.003
T3 (3)	12	18.5 ± 6.1	$p_{1,4} = 0.0005; p_{2,3} = 0.12$
T4 (4)	8	25.8 ± 9.4	$p_{2,4}=0.01;p_{3,4}=0.04$
Total	32	17.9 ± 9.2	

Table 2: ¹⁸FDG uptake by T invasive degree of tumor.

 SUV_{max} increased with invasive degree of tumors, low in patients with tumor retention (T1), SUV_{max} = 7.9 ± 4.4. When invasive degree increased to T2, the SUV_{max} increased with an average of 14.1 ± 8.7 and continued to increase in T3, T4.

Node	Number of patients	SUV _{max}	р		
N0 (1)	3	11.3 ± 8.5		$D_{1,2} = 0.29$; $D_{1,3} = 0.1$	
N1 (2)	6	14.4 ± 7.2		$p_{1,4} = 0.08; p_{2,3} = 0.18$	
N2 (3)	13	17.7 ± 7.3	18.6 ± 9.1	$p_{24}=0.07;p_{3,4}=0.13$	
N3 (4)	10	22.3 ± 11.5			

Table 3: ¹⁸FDG uptake of tumor by node group.

 SUV_{max} of tumors with metastatic nodules (including N1, N2 and N3) was 18.6 ± 9.1; higher than in the non-detectable nodal metastasis on ¹⁸FDG PET/CT. It can be seen that when esophageal cancer patients in progress, with metastatic nodules, the tumor metabolism is increasing sharply, the more metastatic nodules (N1 to N2, to N3), ¹⁸FDG uptake at tumor continuously increased (from 14.4 ± 7.2 of the N1 group increased to 17.7 ± 7.3 in the N2 group and 22.3 ± 11.5 in esophageal cancer group N3).

Table 4: ¹⁸FDG uptake of tumor in patients with and without metastase.

Metastasis (on PET/CT)	Number of patients	SUV _{max}	р	
Non-metastasis	18	18.8 ± 9.7	n 0.06	
Metastasis	14	16.7 ± 8.7	p = 0.26	

However, the difference was not statistically significant. It is possible that in the late stage of distant metastasis, in the primary tumor, there was even necrosis, the tumor metabolism did not continue to increase.

Stage	Number of patients	SUV _{max}	р
l - II (1)	5	11.4 ± 9.5	p _{1,2} = 0.08
III (2)	13	20.9 ± 9.3	p _{1,3} = 0.25
IV (3)	14	16.7 ± 8.7	p _{2,3} = 0.11
Total	32	17.9 ± 9.2	

Table 5: ¹⁸FDG uptake by metastase stage.

¹⁸FDG (SUV_{max}) uptake was low when the patient was in stages I - II, and then increased from stage III. In stage IV with distant metastase, SUV_{max} tended to decrease.

2. Diagnosis of tumors, nodes of esophageal cancer by ¹⁸FDG PET/CT.

PET/CT scan with ¹⁸FDG detected esophageal cancer in 100% of patients. ¹⁸FDG uptake increased sharply, SUV_{max} from 3.1 to 44.8; average value of 17.9 \pm 9.2, which means 6 to 7 times higher than the normal diagnosis threshold and thus 100% was positive.

- Diagnosis of invasive tumors (T):

After ¹⁸FDG PET/CT, the diagnosis result by T (invasive) classification in 1 patient before ¹⁸FDG PET/CT was T1, after ¹⁸FDG PET/CT was T2 and 1 patient from T3 after ¹⁸FDG PET/CT was T4 due to tracheal invasion.

- Diagnosis of nodes (N):

Before ¹⁸FDG PET/CT scan, on CT, 14 upper lymph nodes and 62 lymph nodes of the lung-mediastinum were detected in 27/32 patients. 5 patients were diagnosed with nodal (N0). Results on ¹⁸FDG PET/CT revealed lymphadenopathy in 29/32 patients (90.6%), including supraclavicular lymphadenopathy (16 lymph nodes/10 patients), lymph node (77 nodes/27 patients) and, in particular, ¹⁸FDG PET/CT detected lymphadenopathy (25 nodes/14 patients). A total of 118 lymph nodes were identified, more than CT at 2 patients and 42 lymph nodes, which changed the diagnosis of lymphadenopathy in 15/32 patients (46.8%).

- Distant metastatic diagnosis:

Before PET/CT scan, distant metastases were detected in 7 patients. On ¹⁸FDG PET/CT, 14/32 patients (43.6%) had distant metastases to the lung, liver and bones, ranging from 1 to 2 different organs per patient, with a total of 26 metastatic lesions (in the lungs of 7 patients with 8 lesions; in the bones of 4 patients with 6 lesions and in the liver of 5 patients with 12 lesions). Thus, ¹⁸FDG PET/CT detected further distant metastases in 7 patients (3 patients with pulmonary metastases, 1 patient with bone metastases, 1 patient with liver metastases).

3. Change of staging after PET/CT scan.

Table 6: Change of staging after ¹⁸FDG PET/CT scan.

Before PET/CT		Stage after ¹⁸ FDG PET/CT scan						
Stage	Number of patients	I	lla	llb	Illa	IIIb	IIIc	IV
1	3	1	-	1	-	-	-	1
lla	1	-	-	1	-	-	-	-
llb	6	-		2	1	1	1	1
Illa	6				4			2
IIIb	3	-	-	-	-	1	2	-
IIIc	6	-	-	-	-	-	3	3
IV	7							7
Total	32	1	0	4	5	2	6	14

There was a change in the diagnostic results after ¹⁸FDG PET/CT in 14/32 patients (43.7%):

+ 1 patient in stage I transferred to stage IIb and 1 patient from stage I transferred to stage IV.

+ 1 patient in stage IIa transfered to stage IIb; 3 patients from stage IIb transfered to stage III (1 IIIa; 1 IIIb and 1 IIIc).

+ 1 patient in stage IIb before ¹⁸FDG PET/CT, after ¹⁸FDG PET/CT changed and transferred to stage IV.

+ 2 patients from stage IIIa transferred to stage IV.

+ 2 patients from stage IIIb transferred to stage IIIc.

+ 3 patients in stage IIIc before ¹⁸FDG PET/CT, after ¹⁸FDG PET/CT ranked stage IV.

¹⁸FDG PET/CT changed the diagnosis result of T invasive, N node, and distant metastatic M compared to prior to ¹⁸FDG PET/CT scan, thus the stage diagnosis has been changed in esophageal cancer patients.

Stage before ¹⁸ FDG PET/CT	Number of patients	Change of staging after ¹⁸ FDG PET/CT					
		Unchangeable	Reduction	Increase in stage			
			of stage	Number of patients	%		
I	3	1	-	2	66.6		
II	7	2	-	5	71.4		
Ш	15	8	-	7	46.7		
IV	7	7	-	-	-		
Total	32	18	-	14	43.7		

Table 7: Change of staging after ¹⁸FDG PET/CT.

Significant changes in patients prior to 18FDG PET/CT were classified as stage I, II (7/10 patients, 70%). 14 patients changed in staging diagnosis, original treatment of 9 patients (28.1%) including 7 patients with stage IV metastases and 2 patients with stage IIb transferred to stage IIIb and IIIc must be changed.

Authors such as Rankin S (2011) [5], Ali Dervim K, Michael A.B (2012) [2], Akira Tangoku, Yota Yamamoto (2012) [1] showed that there were many modern imaging diagnostics such as endoscopic ultrasound combined with small needle biopsy, chest and abdominal CT, PET. Each method has its own advantages and disadvantages. Endoscopic ultrasonography is the preferred method for detecting primary tumors and regional lymph nodes, but no lesions are detected distant from esophageal tumor 5 cm. CT is commonly applied for stage diagnosis, however, accuracy is affected when some malignant nodules are small in size or when inflammatory lesions or benign pathologies. 18FDG PET/CT will detect nodal changes that CT does not detect. The main advantage of 18FDG PET/CT is to detect distal metastases in the liver, bones, and lungs for accurate stage diagnosis [4].

CONCLUSSION

¹⁸FDG uptake in esophageal cancer was high, SUV_{max} of 3.1 - 44.8; average value of 17.9 \pm 9.2; increased in invasive degree of tumor. It was low in patients in the focal period (T1), SUV_{max} = 7.9 \pm 4.4, and increased in T2 (14.1 \pm 8.7) continuously increased in T3, T4. SUVmax was low when the patient was still in stage I - II, then rose from stage III. SUVmax in stage IV was in the direction of decrease.

¹⁸FDG PET/CT screening detected 29/32 patients (90.6%) with lymphadenopathy, a total of 118 nodes including 16 superior lymph nodes, 77 lung neoplasia lymph nodes, 25 lymph nodes. Distant metastatic found in 7 patients. ¹⁸FDG PET/CT results changed the staging diagnosis according to T in 2/32 patients (6.3%), according to N in 15/32 patients (46.8%). The overall result after 18FDG PET/CT screening had 14/32 patients (43.7%) with stage-change 7/10 patients (70%) in stage I, II; and 7/15 patients (46.7%) in stage III.

REFFERENCES

1. Akira Tangoku, Yota Yamamoto. The new era of staging as a key for an appropriate treatment for esophageal cancer. Ann Thorac Cardiovasc Surg. 2012, 18, pp.190-199.

2. Ali Dervim K, Michael A.B. Applications of PET/CT in patients with esophageal cancer. Diagn Interv Radiol. 2012, 18, pp.171-182.

3. Chang K.Y, Chang J.Y, Chao J et al. Modern staging and utility of PET imaging in esophageal cancer management. Journal of the National Comprehensive Cancer Network. 2008, 6 (9), pp.862-869.

4. Robert Matthews, Minsig Choi. Clinical utility of PET MRI in gastrointestinal cancers. Diagnostics. 2016, 6, pp.35-46.

5. Rankin S. The value of FDG PET/CT in esophageal cancer. Cancer Imaging. 2011, 11, pp.156-160.