COMPARE ¹⁸FDG-PET/CT SIMULATION AND CT SIMULATION IN THE 3D CONFORMAL RADIATION THERAPY ON THE PATIENTS WITH ESOPHAGEAL CANCER

Tran Van Ton¹; Tran Viet Tien¹; Lai Thi Dinh¹

SUMMARY

Objectives: To compare the technical parameters of the radiotherapy plan using ¹⁸FDG PET/CT simulations to the plan of using CT simulation in 3D conformal radiation therapy in patients with esophageal cancer. Subjects and methods: A prospective clinical interventional study was performed on 22 patients who were diagnosed with esophageal cancer and were indicated radiotherapy at Cancer Center, 103 Military Hospital from January 2017 to July 20118. Results: The length of primary tumors on ¹⁸FDG PET/CT was 7.94 ± 3.74 cm, it was 8.80 ± 3.36 on CT with p = 0.029. Compared to CT simulation, ¹⁸FDG PET/CT reduced primary tumor length in 59.09% of patients and increased primary tumor length in 40.91% of patients. ¹⁸FDG PET/CT increased the number of lymph nodes in 50% of patients and decreased in 27.27% of patients; 22.73% of the patients had the same number of lymph nodes. The overall average of cumulative radiation in the nodes on ¹⁸FDG PET/CT was 35.00 ± 39.25 cm³, it was 16.48 ± 18.16 cm³ on CT with p = 0.009. V40 of both lungs on the plan of using¹⁸FDG PET/CT simulations was 4.82 ± 3.32%; the plan of using CT was 3.59 ± 1.90 with p = 0.041. Conclusion: The application of ¹⁸FDG PET/CT simulations in 3D conformal radiation therapy help to determine the volume of tumor and lymph nodes more accurately than CT and should be routinely applied in esophageal cancer radiotherapy.

* Keywords: Esophageal cancer;¹⁸FDG PET/CT simulation; 3D conformal radiotherapy.

INTRODUCTION

In the treatment of esophageal cancer, radiation therapy is an important and effective method. 3D conformal radiotherapy is a modern technique that allows to concentrate high doses of radiation in the tumor and minimizes the dose of radiation to the surrounding healthy organs. To achieve this target, it is required to determinate accurately the volume of radiation therapy. Many domestic and foreign studies show that ¹⁸FDG PET/CT is more sensitive than CT to detect tumors and lymph nodes in patients with esophageal cancer, thus helping to identify major radiotherapy volumes more accurately.

In Vietnam, there have been several studies on the application of ¹⁸FDG PET/CT simulation in the plan of radiotherapy for esophageal cancer by Nguyen Van Chau and Bui Quang Bieu [1]. However, the application of ¹⁸FDG PET/CT simulations in radiation therapy for esophageal cancer is limited. To evaluate the value of ¹⁸FDG PET/CT in the plan of radiotherapy for esophageal cancer, we conducted this study aiming:

1. 103 Military Hospital Correspoding author: Tran Van Ton (drton103@gmail.com) Date received: 20/10/2018 Date accepted: 29/11/2018

JOURNAL OF MILITARY PHARMACO-MEDICINE Nº1-2019

To compare the technical parameters of the radiotherapy plan using ¹⁸FDG PET/CT simulations to the plan of using CT simulation in 3D conformal radiation therapy in patients with esophageal cancer.

SUBJECTS AND METHODS

1. Subjects.

22 patients were diagnosed with esophageal cancer and had radiotherapy indication at Cancer Center, 103 Military Hospital from January 2017 to July 20118.

* Inclusion criteria:

- Patients diagnosed with esophageal cancer who had radical radiotherapy indication.

- Patients were treated for the first time.

- Patients agreed to participate in the study.

* Exclusion criteria:

- Weak general condition: PS score 3 - 4.

- Patients with esophageal cancer had combined severe diseases.

- Esophageal cancer with complications: Esophageal fistula, gastrointestinal bleeding...

- Metastatic cancer to the esophagus: Lower throat cancer, lung metastatic cancer to the esophagus.

- Patients whose research parameters were not collected sufficiently.

- Patients with a history of allergy to contrast medium.

2. Methods.

A prospective, clinical, intervention study was performed on patients with esophageal cancer who had radiotherapy indication were simulated CT and ¹⁸FDG PET/CT simulations. Two radiologists determined the radiotherapy volumes on two imaging systems CT simulation and ¹⁸FDG PET/CT simulation. Conducting two independent radiotherapy plans and comparing two plans about radiotherapy parameters into tumors, radiotherapy parameters into lymph nodes and absorbed dose in healthy organs. The data was processed by SPSS software 20.0

RESULTS AND DISCUSSION

Table 1: Compare the number of tumor lesions.

The length of primary tumor was determined on ¹⁸FDG PET/CT simulations and CT simulations.

Method	Number of tumor lesions	Number of patient (n = 22)	Percentage (%)
	1 lesion	19	86.38
¹⁸ FDG PET/CT	2 lesions	3	13.62
	Total	22	100
	1 lesion	21	95.46
СТ	2 lesions	1	4.54
	Total	22	100

JOURNAL OF MILITARY PHARMACO-MEDICINE N°1-2019

One primary lesion was detected by CT in 21 patients accounting for 95.46% and only 1 patient had 2 primary lesions, accounting for 4.54%. ¹⁸FDG PET/CT detected 2 patients with 2 primary lesions. The second minor tumor lesions (10 mm and 15 mm), without significant morphologic changes were missed on CT. ¹⁸FDG PET/CT provides both anatomical and metabolic imaging that allows to detect malignant lesions even without significant morphological changes. Nkhali L et al (2011) showed that ¹⁸FDG PET/CT can detect the malignant lesions of the esophagus at T1 stage [2].

Table 2: Changes in tumor length determined on ¹⁸FDG PET/CT simulation compared to CT simulation.

Me	ethod	The length o	р		
¹⁸ FDG PET/C	Т	7.94 ± 3.74			0.029
СТ	СТ		8.80 ± 3.36		
Changes in tu	mor length determ	ined on ¹⁸ FDG PE	T/CT simulation com	pared to CT sim	nulation
Increase		Decrease		Unchange	
n	%	n % n		%	
9	40.91	13	59.09	0	0
Reduction in tumor length on ¹⁸ FDG PET/CT simulation compared to CT simulation					
Method		The length of primary tumor $(cm) (n = 13)$			р
¹⁸ FDG PET/CT		6.38 ± 2.39			0.000
СТ		10.35 ± 3.50			

The tumor length determined on ¹⁸FDG PET/CT was 7.94 \pm 3.74 cm, smaller than that on CT simulation at 8.80 \pm 3.36 cm, the difference was statistically significant with p = 0.029. Compared to CT simulation, ¹⁸FDG PET/CT reduced the length of tumor in 13 patients, accounting for 59.09%, increasing the length of tumor in 9 patients accounted for 40.91%. Among 13 patients who had a decrease in tumor length compared to CT, the length of tumor on ¹⁸FDG PET/CT was 6.38 \pm 2.39 cm, it was 10.35 \pm 3.50 cm on CT, the difference was statistically significant with p < 0.05. This difference is very significant in the practice of radiation therapy to reduce the length of the radiation field, minimize the damage to surrounding institutions. According to Konski et al (2005), the average length of primary esophagus tumor determined on CT was 6.77 cm, while it was 5.4 cm on ¹⁸FDG PET/CT [3]. Nguyen Dinh Chau (2018) conducted a study on 22 patients with 1/3 upper esophageal cancer showed that the average tumor length on ¹⁸FDG PET/CT was 5.6 \pm 1.8 cm, less than on CT at 6.3 \pm 1.7 cm with p = 0.03 [1].

JOURNAL OF MILITARY PHARMACO-MEDICINE N°1-2019

Table 3: Changes in tumor volume determined on ¹⁸FDG PET/CT simulation compared to CT.

Primary tumor volume change on ¹⁸ FDG PET/CT simulation compared to CT						
Increase		Decrease		Unchange		
n	c	%	n	%	n	%
9	40	.90	13	59.1	0	0
Reduction in tum	Reduction in tumor volume on ¹⁸ FDG PET/CT simulation compared to CT					
Method			Gross tumor volume (GTV) (cm^3) (n = 13)		(n = 13)	р
¹⁸ FDG PET/CT			53.88 ± 44.50			
СТ	CT 81.62 ± 56.62			0.008		

Compared to CT simulation, ¹⁸FDG PET/CT simulation decreased gross tumor volume in 13 patients (59.1%), but increased in 9 patients (40.9%). Of the 13 patients with tumor size on ¹⁸FDG PET/CT smaller than CT, the mean GTV determined on ¹⁸FDG PET/CT was 53.88 \pm 44.50 cm³, it was 81.62 \pm 56.62 cm³ on CT, the difference was statistically significant with p = 0.008. With this difference, the plan to use ¹⁸FDG PET/CT helped to reduce the volume of irradiation in the esophagus compared to conventional CT.

This finding was consistent with the results of some authors in the world according to Moureau in 2005, ¹⁸FDG PET/CT reduced volume in 35% of patients compared to CT. According to Leong T (2006), ¹⁸FDG PET/CT changed the radiation volume in 38% of patients [5].

Table 4: Change in the number of lymph nodes identified on ¹⁸FDG PET/CT simulation compared to CT.

Change the number of lymph nodes identified on ¹⁸ FDG PET/CT simulation compared to CT						
Increase		Decrease		Unchange		
n	%		n	%	n	%
11	50		6	27.27	5	22.73
¹⁸ FDG PET/CT s	¹⁸ FDG PET/CT simulation detect more lymph nodes compared to CT					
Method			Number of lymphnode lesions (n = 1			р
¹⁸ FDG PET/CT			3.63 ± 1.12			
СТ	1.72 ± 1.00				0.000	

In this study, we found that compared to CT, ¹⁸FDG PET/CT increased lymph node numbers in 11 patients (50%), reduced in 6 patients (27.27%). There were 5 patients with the unchanged number of lymph nodes (22.73%). Among the 11 patients with an increase in lymph node numbers, the average number of lymph nodes detected on ¹⁸FDG PET/CT was 3.63 ± 1.12 nodes, it was 1.72 ± 1.00 nodes on CT with p < 0.05.

This was a statistically significant difference indicating that ¹⁸FDG PET/CT is more likely to detect lymph nodes than CT. According to Theodore S.H et al (2008), ¹⁸FDG PET/CT can detect lesions with the size < 10 mm [6].

Table 5: Changes in lymph node volume of	¹⁸ FDG PET/CT s	imulation compared to CT.

Method			Total volume of lymph node (cm^3) (n = 22)			р
¹⁸ FDG PET/CT			35.00 ± 39.25			0.009
СТ			16.48 ± 18.16			
Changes in lymp	h node v	olume of	¹⁸ FDG PET/CT si			
Increase			Decrease		Unchange	
n	c	%	n	%	n	%
16	72	.73	6	27.27	0	0
Increasing in lymph node volume of ¹⁸ FDG PET/CT simulation compared to CT						
Method		Total volume of lymph node (cm^3) $(n = 16)$			р	
¹⁸ FDG PET/CT		44.19 ± 41.96				
СТ		17.05 ± 20.87			0.002	

The average total volume of lymph nodes determined on ¹⁸FDG PET/CT was $35.00 \pm 39.25 \text{ cm}^3$, it was $16.48 \pm 18.16 \text{ cm}^3$ on CT. The difference was statistically significant with p = 0.009. This result is consistent with the fact that ¹⁸FDG PET/CT detect more lymph nodes than CT. The ¹⁸FDG PET/CT simulations increased the volume of radiotherapy into lymph nodes in 16 patients (72.73%), reduced in 6 patients (27.27%). Of the 16 patients, with a total lymph node volume on ¹⁸FDG PET/CT bigger than CT. The average total volume determined on ¹⁸FDG PET/CT was 44.19 ± 41.96, it was 17.05 ± 20.87 on the CT, this difference was statistically significant with p = 0.002.

Table 6: Comparison of ¹⁸FDG PET/CT and CT on absorbed dose in healthy organ.

Method	Average dose at two lungs (Gy) (n = 22)	р
¹⁸ FDG PET/CT	13.69 ± 3.47	0.349
СТ	13.15 ± 3.28	
	V40: The volume of two lungs received 40 Gy (%) (n = 22)	
¹⁸ FDG PET/CT	4.82 ± 3.32	0.041
СТ	3.59 ± 1.90	
	Average dose at heart (Gy) (n = 22)	р
¹⁸ FDG PET/CT	15.06 ± 7.60	0.609
СТ	14.28 ± 5.24	
	Average dose at spinal cord (Gy) (n = 22)	р
¹⁸ FDG PET/CT	21.87 ± 9.93	0.448
СТ	22.58 ± 9.75	

JOURNAL OF MILITARY PHARMACO-MEDICINE Nº1-2019

On the radiotherapy plan of using ¹⁸FDG PET/CT simulation, the average dose in the both lungs was 13.69 ± 3.47 Gy, at the heart and spinal cord, it was 15.06 ± 7.60 Gy and 21.87 ± 9, 93 Gy; on the plan of using CT simulation, this figure was 13.15 ± 3.28 Gy, 14.28 ± 5.24 Gy and 22.58 \pm 9.75, respectively with p > 0.05. This difference was not statistically significant, the absorbed dose in healthy organs in both plans was in accordance with the guidelines of the NCCN and ICRU. However, V40 of both lungs on the plan of using ¹⁸FDG PET/CT simulation was higher than the plan of using CT. The difference was statistically significant with p = 0.041. This recommends radiotherapy in clinical practice, when using ¹⁸FDG PET/CT simulations to prevent and monitor adverse effects in the lung.

CONCLUSION

The ¹⁸FDG PET/CT simulations helps to determine the correct volume of therapy compared to CT simulations, particularly the length of the tumor and the radiotherapy volume of lymph node. The length of primary tumor determined on ¹⁸FDG PET/CT was 7.94 ± 3.74 cm, shorter than that on CT with p = 0.029. Compared to CT simulation, ¹⁸FDG PET/CT simulation reduced tumor volume in 59.09% of patients. ¹⁸FDG PET/CT increases the number of lymph nodes in 50% of patients compared to CT. The total lymph node volume determined on ¹⁸FDG PET/CT was 35.00 ± 39.25 cm³, it was 16.48 ± 18.16 cm³ on CT with p = 0.009. ¹⁸FDG PET/CT simulations increased the volume of radiotherapy into lymph nodes in 72.73% of patients. On the plan of using ¹⁸FDG PET/CT simulation, the volume of two lungs received 40 Gy was $4.82 \pm 3.32\%$, higher than the plan of using CT at 3.59 ± 1.90 with p = 0.041.

REFERENCES

1. Bui Quang Bieu, Nguyen Dinh Chau. Value of 18F FDG-PET/CT in the plan of dose modulation radiotherapy on patients with upper esophageal cancer. Journal of Clinical Medicine and Pharmacy 108. No. 3, pp.45-51.

2. Nkhali L, Thureau S, Edet-Sanson A et al. FDG-PET/CT during concomitant chemo-radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses. Acta Oncologica. 2015, 54 (6), pp.909-915.

3. A. Konski, Doss M, Milestone B. The integration of 18-fluoro-deoxyglucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. J Radiat Oncol Biol Phys. 2005, 61 (4). p.1123-1128.

4. Moureau-Zabotto L, Touboul E, Lerouge D et al. Impact of CT and ¹⁸FDG PET image fusion for conformal radiotherapy in esophageal carcinoma. J Radiat Oncol Biol Phys. 2005, 63 (2), pp.340-345.

5. Leong T, Everitt C, Yuen K et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol. 2006. 78 (3), pp.254-261.

6. Theodore S.Hong, Joseph H.Killoran, Marcelo Mamede et al. Impact of manual and automated interpretation of fused PET/CT data on esophageal target definitions in radiation planning. J Radiat Oncol Biol Phys. 2008, 72 (5), pp.1612-1618.